# CITC THE HUB OF IT PVT LTD

Corp. Office: Landran Road, Kharar, District - SAS Nagar, Punjab 140301

An autonomous organization Regd. under Ministry of Corporate Affaires CIN No. U85499PB2023PTC059506 (By Govt. of India)

# **Course Syllabus: Post Graduate Diploma in Computer Applications**

Batch Name: PGDCA Course Start: 1st of Every Month

Eligibility: Graduation Course Duration: 350 Hours

### Courses / Modules Paper

### Module 1: Both the papers are compulsory

| Paper 1    | Paper 2                                  |
|------------|------------------------------------------|
| Langauge C | Operating System & Computer Architecture |

### Module 2: Opt any two papers

| Paper 1      | Paper 2               | Paper 3      |
|--------------|-----------------------|--------------|
| Language C++ | Data Strutcures & DBM | Project Work |

### Module 1: Paper 1: Language C

### 1: Introduction of C

- 1.1 History
- 1.2 Why C language
- 1.3 Getting g started with C
- 1.4 Writing first program: hello world
- 1.5 Algorithm and flowchart
- 1.6 Understanding the structure and syntax of C
- 1.7 C programming style

### 2: Fundamentals of C

- 2.1 Introduction
- 2.2 Character set
- 2.3 Keywords
- 2.4 Identifiers
- 2.5 Variables 2.6 Data types
- 2.7 Constants
- 2.8 Declaring a keyword
- 2.9 Reading data from keyboard

### 3: Operators and expressions

- 3.1 Introduction
- 3.2 Arithmetic operator
- 3.3 Increment and Decrement operator
- 3.4 Assignment operator
- 3.5 Relational operator
- 3.6 Logical operator
- 3.7 Conditional operator
- 3.8 Bitwise operator
- 3.9 Special operators

### 4: Control Statements

- 4.1 Introduction
- 4.2 Branching statements

- •lf
- Nested if
- •If else
- Nested if else
- 4.3 Looping statement
  - For loop
  - •While loop
  - •Do while loop
- 4.4 Jumping statement
  - •Goto
  - Break
  - Continue

### 5: Function in C

- 5.1 Introduction
- 5.2 Types of functions
- 5.3 Types of user define functions
  - No return type with no arguments
  - Return type with no arguments
  - No return type with arguments

  - Return type with arguments
- 5.4 Need of functions
- 5.5 Scope rules 5.6 Recursion
- 5.7 Function using arguments
  - Call by value
  - Call by reference

## 6: Array in C

- 6.1 Introduction
  - Declaration of Array
  - Initializing an array
  - Accessing an Array
- 6.2 One-dimensional array 6.3 Two-dimensional array
  - Nesting of loops
- 6.4 Multi-dimensional array
- 6.5 Dynamic Array

### 7: Pointers in C

- 7.1 Introduction
- 7.2 Declaration of pointers
- 7.3 Initialization of pointers
- 7.4 Accessing variable through pointer
- 7.5 Pointer to a pointer
  - Declaring a double pointer
- 7.6 Operation on pointer
  - Increment and decrement operator
  - Addition and subtractions of constant value
  - Subtracting two pointers
  - Comparison between two pointers
- 7.7 Pointer to array
- 7.8 Array to pointer
- 7.9 Passing pointer as a function
- 7.10 Pointer to structure

## 8: Structures in C

- 8.1 Introduction
- 8.2 Defining a structure
- 8.3 Declaring a structure member
  - Declaring structure variable separately
  - Declaring structure variable along with definition
- 8.4 Accessing structure member
  - With Dot operator
  - •With arrow operator
- 8.5 Structure initialization 8.6 Array of structure
- 8.7 Using structure as a function argument
  - Passing structure member as an argument
  - Passing structure variable as an argument
  - Passing structures pointer as an argument
- 8.8 Array within structure
- 8.9 Nested structure
- 8.10 typedef keyword
  - Typedef vs #define

# Website: www.citcchandigarh.com

### 9: Union in C

- 9.1 Introduction
- 9.2 Declaration of union
- 9.3 Accessing union member
- 9.4 Bit field

### 10: Input and output

- 10.1 Introduction
- 10.2 Standard files
- 10.3 Formatted input output
  - •scanf()
  - •printf()
- 10.4 Unformatted input output
  - •getchar()
  - •Getch()
  - •gets()
  - •putchar()
  - •puts()
- 10.5 Error Handling
  - •errorno
  - strerror
  - Perror

### 11: File I/O

- 11.1 Introduction
- 11.2 Needs of files
- 11.3 Types of files
  - Text files
    - Binary files
- 11.4 Files operations
  - •File creation
  - Opening a file
  - •Reading data from file
  - Writing data to file
  - Closing a file
- 11.5 Reading writing text files
  - •getc()
  - •putc()
  - •getw()
  - •putw()
  - •getchar() •putchar()
  - •fprintf()
  - •fscanf()
- 11.6 Reading writing binary files
  - •fread()
  - •Fwrite()

# Paper 2: Operating System & **Computer Architecture**

### **Operating System**

# 1: Introduction of OS

- 1.1 Introduction
- 1.2 Basics of OS
- 1.3 Generation of OS
- 1.4 Types of OS
- 1.5 OS services
- 1.6 System calls
- 1.7 OS structure

### 2: Process Management

- 2.1 Process definition
- 2.2 Process states
- 2.3 Process state transition
- 2.4 Process control block
- 2.5 Context switching
- 2.6 Threads
  - Concepts of multi-threads
  - Benefits of threads
  - Types of threads
- 2.7 Process scheduling Definition
- 2.8 Scheduling Objectives
- 2.9 Types of schedulers
- 2.10 Scheduling Criteria

### 3: Inter Process Communication

- 3.1 Race condition
- 3.2 Critical section
- 3.3 Mutual Exclusion
- 3.4 Hardware Solution
- 3.5 Strict alternation 3.6 Peterson's solution
- 3.7 The producer Consumer Problem

- 3.8 Semaphores
- 3.9 Event Counters
- 3.10 Monitors
- 3.11 Message Passing
- 3.12 Classical IPC Problems

### 4: Deadlocks

- 4.1 Definition
- 4.2 Deadlock Characteristics
- 4.3 Deadlock prevention
- 4.4 Deadlock avoidance
  - Banker's Algorithm
- 4.5 Deadlock Detection and avoidance

## 5: Memory Management

- 5.1 Definition
- 5.2 Logical & Physical address map
- 5.3 Memory allocation
- 5.4 Paging
- 5.5 Virtual Memory
  - Basics of virtual memory
  - •Hardware & control structure
  - Locality of reference
  - Page Fault
  - Working set
  - Dirty page/ Dirty bit
  - Demand paging

Page replacement policies

# 6: Input/ Output Management

- 6.1 Principles of I/O Hardware
  - •I/O devices
  - Device controllers
  - Direct memory access
- 6.2 Principles of I/O software
  - Goals of interrupt handlers
    - Device drivers
    - •Device independence I/O Software
- 6.3 Secondary-Storage Structure
  - Disk stucture
  - Disk scheduling algorithm

# 7: File Management

- 7.1 File concept
- 7.2 Access method
- 7.3 File types
- 7.4 File Operations
- 7.5 Directory structure 7.6 File system structure
- 7.7 Allocation method
- 7.8 Free space management
- 7.9 Directory Implementation

# 8: Security & Protection

- 8.1 Security environment 8.2 Design principles of security
- 8.3 User authentication
- 8.4 Protection Mechanism 8.5 Protection Domain

8.6 Access Control List

# Computer Architecture

## 1: Boolean Algebra

- 1.1 Definition
- 1.2 Properties of Boolean algebra 1.3 Minterm & Maxterm
- 1.4 Logic operations
- 1.5 Digital Logic gates
- 1.6 IC digital Logic families

# 2: Basic gates computations

- 2.1 Different types of Flip-Flop
- 2.2 Product of sum simplifications NAND or NOR implementation
- 2.3 Don't care condition
- 2.4 Tabulation method
- 2.5 Adder
- 2.6 Subtractor
- 2.7 Code Conversion
- 2.8 Universal gate

### 3: Sequential Logics

- 3.1 Flip-Flops
- 3.2 Triggering of Flip-Flop 3.3 Analysis of clocked sequential circuits
- 3.4 Flip-Flop Excitation 3.5 Design with static equation

- 5.1 Introduction
  - 5.2 Declaring a Class

    - Member function
  - - Class function definition
    - Member function definition
  - 5.4 Objects
  - •Accessing members using objects 5.5 Object as a function argument
    - Pass by value
    - Pass by reference

# 6: Operator Overloading

- 6.2 Operator Overloading Methods
- 5.3 Type Conversion

- 4.2 Computer instructions
- 4.5 Input-Output & intrerupt
- 4.6 Design of basic computer

# 5: The basic computer

- 5.1 Introduction
- 5.4 Program Loops
- 5.6 IO Programming

# Paper 1: Language C++

- 1.2 Why Java language
- 1.3 Getting started with C++
- 1.5 Algorithm and flowchart

- 2.1 Introduction to OOP
- 2.3 objects
- 2.4 Classes
- 2.6 Abstraction
- 2.8 Inheritance 2.9 Applications of OOP

- 3: Operators in C++
  - 3.2 Special operators
  - 3.3 scope resolution operator 3.4 Member dereferencing operator

# 3.6 Manipulators and Typecast operator

- 4.1 Introduction
- 4.2 Functions
  - Devlaration Definition
- Declaration Scope of variables

- 5: Classes and Objects
  - Data members
  - Private and public members

- **Design**
- 4.1 Instruction Codes, Computer registers

4: Basic Computer Organization &

- 4.3 Timing & Control, Instruction cycle
- 4.4 Memory Reference Instruction

# 5.2 Machine Language

- 5.3 Assembly Language
- 5.5 Subroutines

# Module 2:

- 1: Introduction of C++
  - 1.1 History
  - 1.4 Writing first program: hello world
  - 1.6 Understanding the structure and syntax of C++ 1.7 C++ programming style

# 2: Principle of OOP

- 2.2 OOP vs Procedural oriented programming
- 2.5 Encapsulation
- 2.7 Polymorphism
- 3.1 Introduction to operators
- 3.5 Memory management operator

- 4: variables and Functions in C++
  - 4.3 Variables
- 4.4 Arrays and Strings

  - Accessing member functions
  - 5.3 Functions
  - Creating an object
  - 6.1 Introduction

# Website: www.citcchandigarh.com

### 7: Constructors in C++

- 7.1 Introduction
- 7.2 Declaration of Constructor
- 7.3 Definition of Constructor
- 7.4 Types of Constructor
  - Default Constructor
  - Parameterized Constructor
  - Copy Constructor
- 7.5 Destructor
  - Definition
  - Use of Destructor

### 8: Inheritance

- 8.1 Introduction
- 8.2 Base Class and Derived Class
- 8.3 Visibility Mode
  - Private
  - •Public
  - •Protected
- 8.4 Types of Inheritance
  - Single inheritance
- Multilevel inheritance
  - Multiple Inheritance
  - Hierarchal Inheritance
  - Hybrid inheritance
- 8.5 Nesting of Classes

## 9: Polymorphism

- 9.1 Introduction
- 9.2 Application and Demonstration
- 9.3 Early Binding
- 9.4 Polymorphism with pointers
- 9.5 Early Binding
- 9.6 Late Binding
- 1.7 Virtual Functions
- 9.8 Pure Virtual Functions

### 10: Exception Handling

- 10.1 Introduction
- 10.2 Exception handling mechanism
  - Throw an Exception
  - Catch an Exception
  - Rethrow an Exception

### 11: Input and Output in C++

- 11.1 Introduction
- 11.2 Standard Streams
- 11.3 Manipulators
- 11.4 Unformatted Input
- 11.5 Unformatted Output

# 12: File Processing

- 12.1 Introduction
- 12.2 Opening and Closing of file
- 12.3 Binary File Operations
- 12.4 Structures and file operations
- 12.4 Classes and File operations
- 12.5 Random File Processing

### Paper 2: Data structure & DBMS

### Data structure

# 1: Data structure & Algorithm

- 1.1 Introduction
- 1.2 Asymptotic Analysis
- 1.3 DS Pointers
- 1.4 DS Structures
- 1.5 Algorithm Definition
- 1.6 Characteristics of algorithm
- 1.7 Elements of algorithm

### 2: Functions

- 2.1 what is function
- 2.2 Types of function
- 2.3 how functions works
- 2.4 functions recursion & how work

### 3: Arrays

- 3.1 Concepts of array
- 3.2 Types of array
- 3.3 Basic Programs
- 3.4 Array with functions
- 3.5 Types of array
- 4: Pointers
  - 4.1 Pointer Basics
  - 4.2 Pointer with functions

- 4.3 Call by reference
- 4.4 Array of pointers & pointer to Array & Programs

### 5: Structure

- 5.1 Understanding about Structure
- 5.2 Pointer structure variable
- 5.3 Structure as a function Argument
- 5.4 Using call by value
- 5.5 Passing reference of structure

### 6: Stacks

- 6.1 Operations on stacks
- 6.2 Arrays & linked representation
- 6.3 Programs on stacks
- 6.4 Push & Pop operations
- 6.5 Traversing

### 7: Applications of stacks

- 7.1 Arithmetic, Expression Evaluation
- 7.2 Notations
- 7.3 Conversions
- 7.4 Evaluations

### 8: Queue

- 8.1 Operations on Queue
- 8.2 Array & linked representation
- 8.3 Programs on stacks
- 8.4 Insert & Delete operations
- 8.5 Circular queue
- 8.6 Applications of queue

### 9: Linked List

- 9.1 Concept of linked list
- 9.2 Difference b/w Linked list & Array
- 9.3 Single linked lis
- 9.4 Representation
- 9.5 Operations
- 9.6 Traversing9.7 Insertion
- 9.8 Deletion
- 9.9 Double linked list
- 9.10 Representation9.11 Operations, Traversing
- 9.12 Circular linked list

### 10: Trees

- 10.1 Introduction
- 10.2 Binary Tree
- 10.3 Complete binary tree
- 10.4 Binary Search tree
- 10.5 Tree traversal
- 10.6 Expression tree
- 10.7 Binary search tree
- 10.8 AVL tree

### 11: Graph

- 11.1 Graph terminology
- 11.2 Representation of graphs
- 11.3 Path matrix
- 11.4 Graph Traversal
- 11.5 BFS \*breadth first search)
- 11.6 DFS (depth first search)
- 11.7 Minimum spanning tree
- 11.8 Kruskal's algorithm & prim's Algorithm

# 12: Hashing & Searhcing

- 12.1 Liner & Binary search trees
- 12.2 Hash function
- 12.3 Hashing techniques & chaining

### 13: Sorting

- 13.1 Bubble sort
- 13.2 Selection sort13.3 Insertion sort
- 13.4 Quick sort 13.5 Merge sort
- 13.6 Heap sort 13.7 Radix sort

### **DBMS**

# 1: Introduction to DBMS

- 1.1 What is database system
- 1.2 Purpose of DBMS
- 1.3 View of data
- 1.4 Relational databases
- 1.5 Database architecture

### 2: Data Models

- 2.1 Introduction
- 2.2 Importance of data model
- 2.3 Basic building blocks
- 2.4 ?Business rules
- 2.5 The evolution of data model
- 2.6 Degree of data abstraction

# 3: Database Design

- 3.1 Database design & ER model Overview
- 3.2 Constraints
- 3.3 ER Diagram
- 3.4 Weak entry set
- 3.5 Codd's rule
- 3.6 Relational schemes3.7 Relational database model
  - Logical view of data
  - •Keys
  - •Integrity rules
- 3.8 Relational Database design
  - Features of good relational database design
  - •Atomic
  - •Domain and Normalization (1NF, 2NF, 3NF, BCNF).

# 4: Relational algebra & Calculus

- 4.1 Introduction
- 4.2 Selection & Projection
- 4.3 Set operations
- 4.4 Renaming
- 4.5 Joins
- 4.6 Syntax, Semantics, Operations4.7 Grouping & Ungrouping
- 4.8 Relational Comparison4.9 Calculus
  - Tuples relational calculusDomain relational calculus
  - Calculus vs algebra

Computational capabilities

- 5: Constraints, Views & SQL
  - 5.1 What is Constraints
  - 5.2 Types of constraints5.3 Integrity constraints
  - 5.4 View
    - IntroductionData independence
  - SecurityUpdates on Views
  - •Comparison b/w tables & Views 5.5 SQL
    - Data definitionAggregate Function
    - •Null values•Nested sub queries•Joined relations, Triggers

# Paper 3: Project Work

Student have to submit project on the basis of concerned subjects.

